28 research outputs found

    Solving fully neutrosophic linear programming problem with application to stock portfolio selection

    Get PDF
    Neutrosophic set is considered as a generalized of crisp set, fuzzy set, and intuitionistic fuzzy set for representing the uncertainty, inconsistency, and incomplete knowledge about the real world problems. In this paper, a neutrosophic linear programming (NLP) problem with single-valued trapezoidal neutrosophic numbers is formulated and solved. A new method based on the so-called score function to find the neutrosophic optimal solution of fully neutrosophic linear programming (FNLP) problem is proposed. This method is more flexible than the linear programming (LP) problem, where it allows the decision maker to choose the preference he is willing to take. A stock portfolio problem is introduced as an application. Also, a numerical example is given to illustrate the utility and practically of the method

    A method to solve two-player zero-sum matrix games in chaotic environment

    Get PDF
    This research article proposes a method for solving the two-player zero-sum matrix games in chaotic environment. In a fast growing world, the real life situations are characterized by their chaotic behaviors and chaotic processes. The chaos variables are defined to study such type of problems. Classical mathematics deals with the numbers as static and less value-added, while the chaos mathematics deals with it as dynamic evolutionary, and comparatively more value-added. In this research article, the payoff is characterized by chaos numbers. While the chaos payoff matrix converted into the corresponding static payoff matrix. An approach for determining the chaotic optimal strategy is developed. In the last, one solved example is provided to explain the utility, effectiveness and applicability of the approach for the problem.Abbreviations: DM= Decision Maker; MCDM = Multiple Criteria Decision Making; LPP = Linear Programming Problem; GAMS= General Algebraic Modeling System

    Multi-criteria decision-making based on Pythagorean cubic fuzzy Einstein aggregation operators for investment management

    Get PDF
    Pythagorean cubic fuzzy sets (PCFSs) are a more advanced version of interval-valued Pythagorean fuzzy sets where membership and non-membership are depicted using cubic sets. These sets offer a greater amount of data to handle uncertainties in the information. However, there has been no previous research on the use of Einstein operations for aggregating PCFSs. This study proposes two new aggregator operators, namely, Pythagorean cubic fuzzy Einstein weighted averaging (PCFEWA) and Pythagorean cubic fuzzy Einstein ordered weighted averaging (PCFEOWA), which extend the concept of Einstein operators to PCFSs. These operators offer a more effective and precise way of aggregating Pythagorean cubic fuzzy information, especially in decision-making scenarios involving multiple criteria and expert opinions. To illustrate the practical implementation of this approach, we apply an established MCDM model and conduct a case study aimed at identifying the optimal investment market. This case study enables the evaluation and validation of the established MCDM model's effectiveness and reliability, thus making a valuable contribution to the field of investment analysis and decision-making. The study systematically compares the proposed approach with existing methods and demonstrates its superiority in terms of validity, practicality and effectiveness. Ultimately, this paper contributes to the ongoing development of sophisticated techniques for modeling and analyzing complex systems, offering practical solutions to real-world decision-making problems

    Goal programming approach for solving heptagonal fuzzy transportation problem under budgetry constraint

    No full text
    Transportation problem (TP) is a special type of linear programming problem (LPP) where the objective is to minimize the cost of distributing a product from several sources (or origins) to some destinations. This paper addresses a transportation problem in which the costs, supplies, and demands are represented as heptagonal fuzzy numbers. After converting the problem into the corresponding crisp TP using the ranking method, a goal programming (GP) approach is applied for obtaining the optimal solution. The advantage of GP for the decision-maker is easy to explain and implement in real life transportation. The stability set of the first kind corresponding to the optimal solution is determined. A numerical example is given to highlight the solution approach

    A Novel Method for Neutrosophic Assignment Problem by using Interval-Valued Trapezoidal Neutrosophic Number

    Get PDF
    Assignment problem (AP) is well- studied and important area in optimization. In this research manuscript, an assignment problem in neutrosophic environment, called as neutrosophic assignment problem (NAP), is introduced. The problem is proposed by using the interval-valued trapezoidal neutrosophic numbers in the elements of cost matrix. As per the concept of score function, the interval-valued trapezoidal neutrosophic assignment problem (IVTNAP) is transformed to the corresponding an interval-valued AP. To optimize the objective function in interval form, we use the order relations. These relations are the representations of choices of decision maker. The maximization (or minimization) model with objective function in interval form is changed to multi- objective based on order relations introduced by the decision makers' preference in case of interval profits (or costs). In the last, we solve a numerical example to support the proposed solution methodology

    On Solutions of Fully Fuzzy Linear Fractional Programming Problems Using Close Interval Approximation for Normalized Heptagonal Fuzzy Numbers

    No full text
    This paper attempts to solve the linear fractional programming problem with fully fuzzy normalized heptagonal fuzzy numbers using the close interval approximation of normalized heptagonal fuzzy number, which is one of the best interval approximations. The maximization (minimization) problem with interval objective function is converted into multi- objective based on order relations introduced by the decision makers’ preference between interval profits (costs). Finally, an example is presented to illustrate the proposed method

    A Novel Approach for Minimizing Processing Times of Three-Stage Flow Shop Scheduling Problems under Fuzziness

    No full text
    The purpose of this research is to investigate a novel three-stage flow shop scheduling problem with an ambiguous processing time. The uncertain information is characterized by Pentagonal fuzzy numbers. To solve the problem, in this paper, two different strategies are proposed; one relies on the idea of a ranking function, and the other on the close interval approximation of the pentagonal fuzzy number. For persons that need to be more specific in their requirements, the close interval approximation of the Pentagonal fuzzy number is judged to be the best appropriate approximation interval. Regarding the rental cost specification, these methods are used to reduce the rental cost for the concerned devices. In addition, a comparison of our suggested approach’s computed total processing time, total machine rental cost, and machine idle time to the existing approach is introduced. A numerical example is shown to clarify the benefits of the two strategies and to help the readers understand it better

    Novel Analysis between Two-Unit Hot and Cold Standby Redundant Systems with Varied Demand

    No full text
    Decisive applications, such as control systems and aerial navigation, require a standby system to meet stringent safety, availability, and reliability. The paper evaluates the availability, reliability, and other measures of system effectiveness for two stochastic models in a symmetrical way with varying demand: Model 1 (a two-unit cold standby system) and Model 2 (a two-unit hot standby system). In Model 1, the standby unit needs to be activated before it may begin to function; in Model 2, the standby unit is always operational unless it fails. The current study demonstrates that the hot standby system is more expensive than the cold standby system under two circumstances: a decrease in demand or the hot standby unit’s failure rate exceeding a predetermined threshold. The cold standby system’s activation time is at most a certain threshold, and turning both units on at once is necessary to handle the increasing demand. In that case, the hot standby will be more expensive than the cold standby system. The authors used semi-Markov and regenerative point techniques to analyze both models. They collected actual data from a cable manufacturing plant to illustrate the findings. Plotting several graphs and obtaining cut-off points make it easier to choose the standby to employ

    Solving Constrained Flow-Shop Scheduling Problem through Multistage Fuzzy Binding Approach with Fuzzy Due Dates

    No full text
    This paper deals with constrained multistage machines flow-shop (FS) scheduling model in which processing times, job weights, and break-down machine time are characterized by fuzzy numbers that are piecewise as well as quadratic in nature. Avoiding to convert the model into its crisp, the closed interval approximation for the piecewise quadratic fuzzy numbers is incorporated. The suggested method leads a noncrossing optimal sequence to the considered problem and minimizes the total elapsed time under fuzziness. The proposed approach helps the decision maker to search for applicable solution related to real-world problems and minimizes the total fuzzy elapsed time. A numerical example is provided for the illustration of the suggested methodology

    Enhancement of Capacitated Transportation Problem in Fuzzy Environment

    No full text
    This research work aims to study a capacitated transportation problem (CTP) with penalty cost, supplies, and demands represented by hexagonal fuzzy numbers. Based on ranking function, the supplies and demands are converted to the crisp form. Through the use of the α‐level, the problem is converted into interval linear programming. To optimize the interval objective function, we define the order relations represented by policy maker’s choice between intervals. The maximization (minimization) problem considering the interval objective function is transformed to multiobjective optimization problem based on order relations introduced by the preference of policy makers between interval profits (costs). A numerical example is given for illustration and to check the validity of the suggested approach
    corecore